Chromatin loops are selectively anchored using scaffold/matrix-attachment regions.

نویسندگان

  • Henry H Q Heng
  • Sandra Goetze
  • Christine J Ye
  • Guo Liu
  • Joshua B Stevens
  • Steven W Bremer
  • Susan M Wykes
  • Juergen Bode
  • Stephen A Krawetz
چکیده

The biological significance of nuclear scaffold/matrix-attachment regions (S/MARs) remains a topic of long-standing interest. The key to understanding S/MAR behavior relies on determining the physical attributes of in vivo S/MARs and whether they serve as rigid or flexible chromatin loop anchors. To analyze S/MAR behavior, single and multiple copies of the S/MAR-containing constructs were introduced into various host genomes of transgenic mice and transfected cell lines. These in vivo integration events provided a system to study the association and integration patterns of each introduced S/MAR. By utilizing FISH to visualize directly the localization of S/MARs on the nuclear matrix or chromatin loop, we were able to assign specific attributes to the S/MAR. Surprisingly, when multiple-copy S/MARs were introduced they were selected and used as nuclear matrix anchors in a discriminatory manner, even though they all contained identical primary sequences. This selection process was probably mediated by S/MAR availability including binding strength and copy number, as reflected by the expression profiles and association of multi-copy tandem inserted constructs. Whereas S/MARs functioned as the mediators of loop attachment, they were used in a selective and dynamic fashion. Consequently, S/MAR anchors were necessary but not sufficient for chromatin loops to form. These observations reconcile many seemingly contradictory attributes previously associated with S/MARs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dividing the empire: boundary chromatin elements delimit the territory of enhancers.

Chromatin is the most complex supramolecular organization of the cell. It has a dual role: to compact the chromosomal DNA and to ensure a highly efficient regulation of gene expression. In consequence of the very compact packaging of the DNA, chromatin is highly repressive for transcription. Enhancers are key regulatory elements which can relieve the chromatin-induced repression. The interplay ...

متن کامل

Scaffold attachments within the human genome.

It is generally agreed that, above the level of the 30 nm fibre, eukaryotic chromatin is constrained into loops, but there is disagreement about the nature of the substructure that serves to anchor loops and the DNA sequences that act as the attachment sites. This problem may stem from the very different methods that all purport to separate loop and attached DNAs. We have tested ideas about how...

متن کامل

Scaffold/matrix attachment region elements interact with a p300-scaffold attachment factor A complex and are bound by acetylated nucleosomes.

The transcriptional coactivator p300 regulates transcription by binding to proteins involved in transcription and by acetylating histones and other proteins. These transcriptional effects are mainly at promoter and enhancer elements. Regulation of transcription also occurs through scaffold/matrix attachment regions (S/MARs), the chromatin regions that bind the nuclear matrix. Here we show that ...

متن کامل

Nuclear Scaffold Attachment Sites within ENCODE Regions Associate with Actively Transcribed Genes

The human genome must be packaged and organized in a functional manner for the regulation of DNA replication and transcription. The nuclear scaffold/matrix, consisting of structural and functional nuclear proteins, remains after extraction of nuclei and anchors loops of DNA. In the search for cis-elements functioning as chromatin domain boundaries, we identified 453 nuclear scaffold attachment ...

متن کامل

Coordination of matrix attachment and ATP-dependent chromatin remodeling regulate auxin biosynthesis and Arabidopsis hypocotyl elongation

Hypocotyl elongation is extensively controlled by hormone signaling networks. In particular, auxin metabolism and signaling play key roles in light-dependent hypocotyl growth. The nuclear matrix facilitates organization of DNA within the nucleus, and dynamic interactions between nuclear matrix and DNA are related to gene regulation. Conserved scaffold/matrix attachment regions (S/MARs) are anch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 117 Pt 7  شماره 

صفحات  -

تاریخ انتشار 2004